

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Microwaves and Antennas

Time: 3 hrs.
Max. Marks: 80

Note: Answer any FIVE full questions, choosing
 ONE full question from each module.

Module-1

1 a. Derive the general transmission line equation to find voltage and current on the line interms of position ' z ' and time ' t '.
(07 Marks)
b. Describe the different mode curve in the case of reflex klystron. (05 Marks)
c. A transmission line has a characteristic impedance of $50+\mathrm{j} 0.01 \Omega$ and terminated in a load impedance of $73-\mathrm{j} 42.5 \Omega$ calculate : i) reflection coefficient ii) SWR.
(04 Marks)

OR

2 a. Define relection coefficient. Derive the equation for reflection coefficient at the load end at a distance ' d ' from the load.
(06 Marks)
b. Describe the mechanism of oscillation of reflex klystron.
(06 Marks)
c. A transmission line has the following parameters : $\mathrm{R}=2 \Omega / \mathrm{m}, \mathrm{G}=0.5 \mathrm{mmho} / \mathrm{m}, \mathrm{f}=1 \mathrm{GHz}$, $\mathrm{L}=8 \mathrm{nH} / \mathrm{m}, \mathrm{C}=0.23 \mathrm{pF} / \mathrm{m}$. Calculate : i) characteristic impedance ii) propagation constant.
(04 Marks)

Module-2

3 a. State and explain the properties of S - matrix.
(07 Marks)
b. With a neat diagram, explain the working of precession type variable attenuator. (06 Marks)
c. A 20 mW signal is fed into one of the collinear port 1 of a lossless H-plane T junction. Calculate the power delivered through each port when other ports are terminated in matched load.
(03 Marks)

OR

4 a. What is magic Tee? Derive its scattering matrix.
(06 Marks)
b. Discuss different types of coaxial connectors.
(04 Marks)
c. 2 transmission lines of characteristic impedance Z_{1} and Z_{2} are joined at plane PP^{\prime}. Express S -parameters in terms of impedance when each line is matched terminated.
(06 Marks)

$\underline{\text { Module-3 }}$

5 a. Explain the construction and field pattern for microstrip line.
(06 Marks)
b. Explain the following terms as related to antenna system :
i) directivity ii) beam efficiency iii) effective aperture.
(06 Marks)
c. The effective apertures of transmitting and receiving antennas in a communication system are $8 \lambda^{2}$ and $12 \lambda^{2}$ respectively. With a separation of 1.5 km between them. The EM wave travelling with frequency of 6 MHz and the total input power is 25 KW . Find the power received by the receiving antenna.
(04 Marks)

OR

6 a. Explain co-planar strip line and shielded strip line.
(06 Marks)
b. Write a note on antenna field zones.
(06 Marks)
c. An antenna has a field pattern given by $\mathrm{E}(\theta)=\cos ^{2} \theta$ for $0 \leq \theta \leq \pi / 2$. Find the beam area and directivity.
(04 Marks)

Module-4

7 a. Derive an expression and draw the field pattern for an array of 2 isotropic point sources with same amplitude and phase spaced $\lambda / 2$ apart.
(06 Marks)
b. Show that the radiation resistance of $\lambda / 2$ antenna is 73Ω.
c. A source has a radiation -intensity power pattern given by $\mathrm{U}=\mathrm{U}_{\mathrm{m}} \sin ^{2} \theta$ for $0 \leq \theta \leq \pi$; $0 \leq \phi \leq 2 \pi$. Find the total power and directivity. Draw pattern.
(04 Marks)

OR

8 a. Derive the expressions for the far field components of short dipole.
(06 Marks)
b. Explain the principle of pattern multiplication with an example.
(06 Marks)
c. A source has a cosine radiation intensity pattern given by $\mathrm{U}=\mathrm{U}_{\mathrm{m}} \cos \theta$ for $0 \leq \theta \leq \pi / 2$ and $0 \leq \phi \leq 2 \pi$. Find the total power and directivity,
(04 Marks)

Module-5

9 a. Derive the expression for strength $\mathrm{E} \phi$ and $\mathrm{H} \theta$ in case of small loop.
(06 Marks)
b. Explain the working and design considerations of Log-periodic antenna.
(06 Marks)
c. A 16 -turn helical beam antenna has a circumference of λ and turn spacing of $\lambda / 4$. Find :
i) HPBW
ii) axial ratio
iii) directivity.
(04 Marks)

OR

10 a. Show that the radiation resistance of small loop is $31171\left(\frac{\mathrm{~A}}{\lambda^{2}}\right)^{2}$.
(05 Marks)
b. Write a short notes on :
i) Yagi Uda array ii) parabolic reflector.
(06 Marks)
c. Determine the length L, H-plane aperture and flare angles θ_{E} and θ_{H} of a pyramidal horn for which the E-plane aperture $\mathrm{a}_{\mathrm{E}}=10 \lambda$. Let $\delta=0.2 \lambda$ in the E-plane and 0.375λ in the H-plane. Also determine beam widths and directivity.
(05 Marks)

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Digital Image Processing

Time: 3 hrs .

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. What is digital image? Explain the fundamental steps of digital image processing. (08 Marks)
b. Explain the concept of sampling and quantization of an image.
(06 Marks)
c. Mention any four fields that use digital image processing.
(02 Marks)

OR

2 a. Explain with neat diagram, how image is acquired using senstor strips?
(08 Marks)
b. Define 4-, 8- and m-adjacency. Compute the lengths of the shortest 4-, 8- and m-path between p and q in the image segment shown in Fig. Q2 (b) by considering $\mathrm{V}=\{2,3,4\}$
(06 Marks)

3	4	1	2	0
0	1	0	4	2
2	2	3	1	4
3	0	4	2	1
1	2	0	3	4

Fig. Q2 (b)
c. A common measure of transmission for digital data is the baud rate defined as the number of bits transmitted per second. Generally, transmission is accomplished in packets consisting of a start bit, a byte (8 bits) of information and a stop bit. Using these facts find how many minutes would it take to transmit a 2048×2048 image with 256 intensity levels using a 33.6 K baud modem?
(02 Marks)

Module-2

3 a. For a given 4×4 image having gray scales between [0,9] perform histogram equalization and draw the histogram of image before and after equalization. 4×4 image is shown in Fig. Q3 (a).
(08 Marks)

$$
\left[\begin{array}{llll}
2 & 3 & 3 & 2 \\
4 & 2 & 4 & 3 \\
3 & 2 & 3 & 5 \\
2 & 4 & 2 & 4
\end{array}\right]
$$

Fig. Q3 (a)
b. Explain smoothing of images in frequency domain using ideal, Butterworth and Gaussian Low pass filter.
(08 Marks)

OR

4 a. Define 2D DFT- with respect to 2D DFT of an image and state the following properties:
(i) Translation
(ii) Rotation
(iii) Periodicity
(iv) Convolution theorem.
b. With necessary graphs, explain the log and power law transformation used for spatial image enhancement.
(05 Marks)
c. Explain image sharpening in spatial domain using second order Laplacian derivative.
(06 Marks)

Module-3

5 a. With necessary equations and graph, explain any four noise probability density functions
b. Explain minimum mean square error filtering method of restoring images.
(08 Marks)
(08 Marks)

OR

6 a. Explain how image degradation is estimated using,
(i) Observation
(ii) Mathematical modeling.
(08 Marks)
b. Explain the order statistics filters used for restoring images in the presence of noise.
(08 Marks)

Module-4

7 a. Write the equations for converting colors from HSI to RGB.
(06 Marks)
b. Write H matrix for Haar transform for $\mathrm{N}=4$ and explain how it is constructed.
(04 Marks)
c. Explain the following morphological algorithms:
(i) Thinning
(ii) Thickening.
(06 Marks)

OR

8 a. What is Pseudo color image processing? Explain intensity slicing as applied to pseudo color image processing.
(07 Marks)
b. Explain Erosion and Dilation operations used for morphological processing.
c. Define wavelet function.

Module-5

9 a. Explain Marr-Hildreth edge detector.
(10 Marks)
b. Write short note on Boundary segments.
(06 Marks)
OR
10 a. Explain the following boundary descriptors:
(i) Shape numbers
(ii) Fourier descriptors.
(08 Marks)
b. Explain Global Thresholding using Otsu's method.

USN

15EC73

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Power Electronics

Time: 3 hrs .
Max. Marks: 80
Note: Answer any FIVE full questions, choosigg ONE full question from each module.
1 a. Mention and explain the different typas of power electronic converter systems. Draw their output/input characteristics.
(08 Marks)
b. With neat waveforms and switching nodel, explain the switching characteristics of power MOSFET.
(08 Marks)
2 a. The bi-polar transistor im below figure - 2(a) is specified to have β_{F} in the range of 8 to 40 . The load resistance is $K_{\mathrm{c}}=11 \Omega$. The dc supply voltage is $\mathrm{V}_{\mathrm{cc}}=200 \mathrm{~V}$ and the input voltage to the base circuit is $\bigvee_{\mathrm{B}}=10 \mathrm{~V}$. If $\mathrm{V}_{\mathrm{CE}(\text { (aat })}=1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}(\text { (sal) })}=1.5 \mathrm{~V}$, find
i) The value of $R_{\text {fi }}$, that results in saturation with an ODF of 5
ii) $\beta_{\text {forced }}$
iii) Power loss P_{T} in transistor.

Fig Q2(a)
(08 Marks)
b. Explain di/dt and $\mathrm{dv} / \mathrm{dt}$ limitation in powen converters.

A BJT is operated as a chopper switch at a frequency of $f_{s}=10 \mathrm{KHz}$. The dc voltage of the chopper is $\mathrm{V}_{\mathrm{s}}=220 \mathrm{~V}$ and the load current is $\mathrm{I}_{\mathrm{L}}=100 \not \mathrm{~A}$. The switching times are $\mathrm{t}_{\mathrm{d}}=0$, $\mathrm{t}_{\mathrm{r}}=3 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{f}}=1.2 \mu \mathrm{~s}$.
Determine: i) The values of L_{s}, C_{\leq}and R_{s} for critically damped conditions.
ii) Rs, if the discharge time is limited te $1 / 3^{\text {rd }}$ of the switching period.
iii) Rs, if the peak discharge current is limited to 10% of the load current
iv) Power loss due to R-C snubber P_{s} neglecting the effect of inductor L_{s} on the voltage of snubber capaciton σ_{s}. Also assume that $\mathrm{V}_{\mathrm{CE}(\text { sat })}=\phi \mathrm{V} \quad(08$ Marks)

Module-2

3 a. In detail explain the two transistor model of a thyristor.
(08 Marks)
b. Mention and explain different thyristor turn-on methods. Mention the advantages of gate triggering.
(08 Marks)

OR

4 a. Explain dynamic turn - off characteristics of SCR.
For R - triggering circuit, the gate voltage required to trigger the SCR is $\mathrm{V}_{\mathrm{GT}}=0.6 \mathrm{~V}$ and corresponding $\mathrm{I}_{\mathrm{GT}}=250 \mu \mathrm{~A}$. The silicon diode is used and input voltage is $\mathrm{V}=100 \sin \mathrm{wt}$. Find firing angle α if $\mathrm{R}_{1}=10 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=220 \mathrm{k} \Omega$.
(08 Marks)
b. Explain uJT relaxation oscillator and design uJT firing circuit using an uJT having the parameters $\eta=0.72, \mathrm{I}_{\mathrm{P}}=60 \mu \mathrm{~A}$, valley voltage $\mathrm{V}_{\mathrm{V}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{V}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BB}}=15 \mathrm{~V}$ and $R_{B B}=5 \mathrm{k} \Omega$. The leakage current with emitter open is 3 mA . The triggering frequency is 1 kHz and $\mathrm{V}_{\mathrm{g}(\min)}=0.3 \mathrm{~V}$. Also calculate the minimum and maximum values of triggering frequency. Assume $\mathrm{C}=0.05 \mu \mathrm{~F}$.
(08 Marks)

Module-3

5
a. With the help of neat circuit diagram describe the operation of a single phase full converter with R.L load. Draw the associated waveforms. Derive expressions for rms and average output voltages.
(08 Marks)
b. A single phase half wave converter is operated from $120 \mathrm{~V}, 60 \mathrm{~Hz}$ supply. If the load is resistive with $\mathrm{R}=10 \Omega$, and the delay angle is $\alpha=60^{\circ}$, calculate efficiency, FF, TUF. Also derive the equations for rms and average output voltages.
(08 Marks)

OB

6 a. With neat circuit diagram and waveforms, explain the principle of phase angle control in AC voltage controller. Derive the equatians for rms and average output voltages.
(08 Marks)
b. A single phase half wave ac voltrge controller has an input voltage of 150 V and a load resistance of 8Ω. The firing anglf of thyristor is 60° in each positive half cycle. Find :
i) Average output voltage
ii) RMS output voltage
iii) Power output
iv) Power factor (pf)
v) Average input current over one cycle.
(08 Marks)

Module-4

7 a. Classify the choppers and explain the different types and chopper circuits.
(08 Marks)
b. Obtain an expression for the output voltage for a step-up chopper. A dc chopper has an input voltage of 200 V and a load of 8Ω resistance. The voltage drop across thyristor is 2 V and the chopper frequency is 800 Hz . The duty cycle $\alpha=0.4$. Find
i) Average output voltage
ii) rms output voltage
iii) Chopper efficiency.
(08 Marks)

OR

8 a. In detail explain buck regulator.
(08 Marks)
b. The buck regulator shown in figure Q 8 (b) has an input voltage of $\mathrm{K}_{\mathrm{s}}=12 \mathrm{~V}$. The required average output voltage is $\mathrm{V}_{\mathrm{a}}=5 \mathrm{~V}$ at $\mathrm{R}=500 \Omega$ and peak - to - peak output ripple voltage is 20 mV . The switching frequency is 25 kHZ . The peak - to - peak ripple current of inductor is limited to 0.8 A , determine :
i) The duty cycle, K ii) The filter inductance, L iii) The filter capacitor, C iv) The critical values of L and C.

Fig Q8(b)
(08 Marks)

Module-5

9 a. What do you mean by inverters? Explain the operation of single phase full bride inverter. Draw the load current waveforms for R, RL and RLC loads.
(08 Marks)
b. Mention the applications of current source inverters. Explain any one type of single phase current source inverter.
(08 Marks)

OR

10 a. Explain solid state relays.
(08 Marks)
b. Explain micnoelectronic relays.

CBCg schenl
 USN

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Real Time Systems

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define real time system. Classify them based on time constraints.
(06 Marks)
b. Explain the different types aff programs in system design.

OR

2 a. Explain briefly sequence control with neat diagrann.
b. What is DDC? Explain with block diagram.
c. Write a short nate on hierarchical system.

Module-2

3 a. What is mecessity of using specialized processors in RTS?
(04 Marks)
b. Explain the different forms of parallel computer architectures.
(12 Marks)

4 a. Explain digital input and output interface.
(08 Marks)
b. Explain the basic interrupt input mechanism with diagram and flowohart.
(08 Marks)

Module-3

5 a. List and explain various requirements in programming languages used in real-time applications.
(08 Marks)
b. Explain briefly declaration and initialization of variables and constants.
(08 Marks)
OR
6 a. What are the data types? Explain each one briefly.
(10 Marks)
b. Writa short notes on overwiew of real time languages.
(06 Marks)

Module-4

7 a. Explain with neat diagram structures offRTOS. (08 Marks)
b. Explain cyclic and preemptive scheduling strategies. ($\mathbf{0 8}$ Marks)

OR

8 a. Draw and explain task state diagram. (08 Marks)
b. Explain the general structunes of Input Output Sub System (IOSS) (08 Marks)

Module-5

9 a. With neat flow-chart describe single program approach with reference to RTS design.
b. Explain software design of RTS using software module.
(08 Marks)

OR
10 a. Explain the outline of abstract modeling approach of ward and Mellor.
(10 Marks)
b. Write \approx short note on YOURDON-METHODOLOGY.
(06 Marks)

Seventh Semester B.E. Degree Examination, Dec.2018/Jan. 2019
DSP Algorithms and Architecture

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.

Module- 1

1 a. Define LTI system.
(04 Marks)
b. Evaluate in detail decimation and interpolation process with neat block diagram and necessary equations.
(06 Marks)
c. Determine the interpolated sequence $y(m)$ with input sequence $x(n)=[0,3,6,9]$ using interpolation sequence $\mathrm{b}_{\mathrm{k}}=\left[\frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{2}{3}, \frac{1}{3}\right]$ and interpolation factor of 3 .
(06 Marks)

OR

2 a. Define Dynamic range and resolution.
(04 Marks)
b. Interpret the D / A converter error due to zero order hold at its output.
(06 Marks)
c. Calculate the Dynamic range and percentage resolution of each of the following number representation formats.
i) 24-bit, single precision, fixed point format.
ii) 48-bit, double precision fixed point format
iii) A floating point format with a 16-bit mantissa and an 8-bit exponent. (06 Marks)

Module-2

3 a. What is Barrel shifter?
(04 Marks)
b. Build 4×4 Barman multiplier.
(06 Marks)
c. Analyze circular addressing mode algorithm.
(06 Marks)

OR

4 a. Analyze MAC unit.
(04 Marks)
b. Elaborate the importance of saturation logic and Guard bits used in MAC unit.
(06 Marks)
c. Analyze the importance of parallelism and pipelining used in programmable DSP with the help of 8-tap FIR Filter.
(06 Marks)

Module-3

5 a. Distinguish the architectural features of three fixed point DSPs.
(08 Marks)
b. Sketch the functional diagram of ALU of TMS320C54XX DSP and briefly explain.
(08 Marks)

OR

6 a. Describe the operation of Hardware timer with a neat diagram.
(08 Marks)
b. Write an ALP of TMS320C54XX processor to compute the sum of three product terms given by an equation.
$\mathrm{y}(\mathrm{n})=\mathrm{h}_{0} \mathrm{x}(\mathrm{n})+\mathrm{h}_{1} \mathrm{x}(\mathrm{n}-1)+\mathrm{h}_{2} \mathrm{x}(\mathrm{n}-2)$ using MAC instruction.
(08 Marks)

Module-4

7 a. Implement the block diagram of FIR Filter and briefly explain.
(04 Marks)
b. Sketch the block diagram for second order IIR Filter and briefly explain.
c. Write a program to multiply two Q15 numbers.

OR

8 a. Derive the equations to implement a butterfly structure in DITFFT algorithm.
b. Write the subroutine for bit reversed order.
(04 Marks)
c. Develop the subroutine to implement butterfly computation.

Module-5

9 a. Describe DMA with respect to TMS320C54XX processor.

OR

a. With a neat block diagram, explain the synchronous serial interface between TMS320C54XX and CoDEC device.
b. Explain the DSP based biotelemetry Receiver system with a neat block diagram.
(08 Marks)

